Comparing Magnetic Bearings with Symmetry of 3

Domingos de Farias Brito David
Universidade Federal Fluminense - Niterói, Rio de Janeiro
Afonso Celso Del Nero Gomes
Universidade Federal Do Rio de Janeiro - Rio de Janeiro

ISMB18 - Lyon, France - july 2023

AMBs: possible types

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

$$
\begin{aligned}
& \text { injecting } \\
& \text { current } i_{1}(t) \\
& \text { in the right side }
\end{aligned}
$$

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure
injecting current $i_{1}(t)$
in the right side and currents i_{2}, i_{3}, i_{4} in the other positions

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional AMB structure can be called Type A

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional AMB structure can be called Type A "8 poles"

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional AMB structure can be called Type A 8 gaps

AMBs: possible types

types of AMBs

types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional AMB structure can be called

Type A 8 gaps uncoupled fluxes
currents at opposite sides

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes
$i_{1}=i_{0}+i_{x}$ $i_{3}=i_{0}-i_{x}$

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes

$$
i_{1}=i_{0}+i_{x} \quad i_{3}=i_{0}-i_{x}
$$

$$
i_{2}=i_{0}+i_{y} \quad i_{4}=i_{0}-i_{y}
$$

base and differential currents

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes
$i_{1}=i_{0}+i_{x} \quad i_{3}=i_{0}-i_{x}$
$i_{2}=i_{0}+i_{y} \quad i_{4}=i_{0}-i_{y}$ for small rotor displacements

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure can be called

Type A 8 gaps uncoupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

$$
\begin{aligned}
& f_{x}=k_{p}^{a} x+k_{i}^{a} i_{x} \\
& f_{y}=k_{p}^{a} y+k_{i}^{a} i_{y}
\end{aligned}
$$

AMBs: possible types

types of AMBs

types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

traditional $A M B$ structure
can be called
Type A 8 gaps uncoupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

$$
f_{x}=k_{p}^{a} x+k_{i}^{a} i_{x}
$$

$$
f_{y}=k_{p}^{a} y+k_{i}^{a} i_{y}
$$

$$
k_{p}^{a}=\mu_{0} n_{a}^{2} A_{a} i_{0}^{2} / h^{3}
$$

$$
k_{i}^{a}=\mu_{0} n_{a}^{2} A_{a} i_{0} / h^{2}
$$

AMBs: possible types

comparisons
ideas
symm of 3
symm of 3

AMBs: possible types

types of AMBs

not traditional AMB structure

AMBs: possible types

not traditional AMB structure

AMBs: possible types

not traditional AMB structure can be called

AMBs: possible types

not traditional AMB structure can be called Type B

AMBs: possible types

not traditional AMB structure can be called Type B "4 poles"

AMBs: possible types

not traditional AMB structure can be called Type B 4 gaps

AMBs: possible types

not traditional AMB structure can be called

Type B 4 gaps coupled fluxes

AMBs: possible types

not traditional AMB structure can be called

Type B
4 gaps coupled fluxes currents at opposite sides

AMBs: possible types

types of AMBs

not traditional AMB structure can be called

Type B 4 gaps coupled fluxes

$$
i_{1}=i_{0}+i_{x} \quad i_{3}=i_{0}-i_{x}
$$

AMBs: possible types

types of AMBs

not traditional AMB structure can be called Type B 4 gaps coupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

AMBs: possible types

types of AMBs

not traditional AMB structure can be called

Type B 4 gaps coupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

base and differential currents

AMBs: possible types

types of AMBs

not traditional AMB structure can be called

Type B 4 gaps coupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

for small rotor displacements

AMBs: possible types

types of AMBs

not traditional AMB structure can be called Type B 4 gaps coupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

$$
\begin{aligned}
f_{x} & =k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y} & =k_{p}^{b} y+k_{i}^{b} i_{y}
\end{aligned}
$$

AMBs: possible types

types of AMBs

not traditional AMB structure can be called Type B 4 gaps coupled fluxes

$$
\begin{array}{ll}
i_{1}=i_{0}+i_{x} & i_{3}=i_{0}-i_{x} \\
i_{2}=i_{0}+i_{y} & i_{4}=i_{0}-i_{y}
\end{array}
$$

$$
\begin{aligned}
& f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
& f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{aligned}
$$

$$
\begin{aligned}
k_{p}^{b} & =2 k_{p}^{a} \\
k_{i}^{b} & =2 k_{i}^{a}
\end{aligned}
$$

symmetry of 4 AMBs

types of AMBs
types of AMBs
comparisons
ideas
symm of 3
symm of 3

for type B:

$$
\left.\begin{array}{l}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{c}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

- fluxes are interconnected, but forces are decoupled

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{l}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

- fluxes are interconnected, but forces are decoupled

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{c}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

- fluxes are interconnected, but forces are decoupled

- A_{b} can be chosen greater than $A_{a} \ldots \ldots \ldots . . n_{b}$ can, possibly, be larger than n_{a}

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{c}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

- fluxes are interconnected, but forces are decoupled

■ k_{p}^{b} and $k_{i}^{b} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ at least two times bigger than k_{p}^{a} and k_{i}^{a}

- A_{b} can be chosen greater than $A_{a} \ldots \ldots \ldots \ldots n_{b}$ can, possibly, be larger than n_{a}
depending on A_{b} and n_{b}, even higher rates

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{l}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

- fluxes are interconnected, but forces are decoupled

- A_{b} can be chosen greater than $A_{a} \ldots \ldots \ldots . . n_{b}$ can, possibly, be larger than n_{a}
depending on A_{b} and n_{b}, even higher rates how much?

symmetry of 4 AMBs: comparisons

types of AMBs
types of AMBs
symm of 4
comparisons
ideas
symm of 3
symm of 3
for type B:

$$
\left.\begin{array}{c}
f_{x}=k_{p}^{b} x+k_{i}^{b} i_{x} \\
f_{y}=k_{p}^{b} y+k_{i}^{b} i_{y}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
k_{p}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0}^{2} / h^{3} \\
k_{i}^{b}=2 \mu_{0} A_{b} n_{b}^{2} I_{0} / h^{2}
\end{array}\right.
$$

■ fluxes are interconnected, but forces are decoupled
■ k_{p}^{b} and $k_{i}^{b} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ at least two times bigger than k_{p}^{a} and k_{i}^{a}

- A_{b} can be chosen greater than $A_{a} \ldots \ldots \ldots . . n_{b}$ can, possibly, be larger than n_{a}
depending on A_{b} and n_{b}, even higher rates how much?
magnetic saturation seems to be the limit

ideas

symm of 3
symm of 3
a very promising idea
types of AMBs types of AMBs symm of 4 comparisons
symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors
types of AMBs
types of AMBs symm of 4
comparisons
symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
types of AMBs
types of AMBs symm of 4
comparisons
symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
types of AMBs
types of AMBs symm of 4
comparisons
symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
smaller flux losses
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
smaller flux losses
why?
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
smaller flux losses
why? less gaps?
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
smaller flux losses
why? less gaps? connected fluxes?
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors cleaner, more compact design easier to manufacture smaller flux losses

```
why? less gaps? connected fluxes?
```

but real answers come only from ...
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors cleaner, more compact design easier to manufacture smaller flux losses
why? less gaps? connected fluxes?
but real answers come only from ...
building
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors cleaner, more compact design easier to manufacture smaller flux losses
why? less gaps? connected fluxes?
but real answers come only from ...
building and
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors cleaner, more compact design easier to manufacture smaller flux losses
why? less gaps? connected fluxes?
but real answers come only from ...
building and testing
types of AMBs
types of AMBs symm of 4
comparisons

ideas

symm of 3
symm of 3
a very promising idea
stiffer suspension to rotors cleaner, more compact design easier to manufacture smaller flux losses
why? less gaps? connected fluxes?
but real answers come only from ...
building and testing prototypes
a very promising idea
stiffer suspension to rotors
cleaner, more compact design
easier to manufacture
smaller flux losses
why? less gaps? connected fluxes?
but real answers come only from ...
building and testing prototypes
before this is complete. . .

symmetry of 3 AMBs

ideas
symm of 3
symm of 3

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3
not traditional AMB structure can be called
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called Type A
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called Type A " 6 poles"
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3
not traditional AMB structure can be called

Type A 6 gaps
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3
not traditional AMB structure can be called

Type A
6 gaps uncoupled fluxes
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3
not traditional AMB structure can be called

Type A
6 gaps uncoupled fluxes 3 injected currents
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A
6 gaps uncoupled fluxes

$$
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y}
$$

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A
6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A 6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

base and differential currents
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A 6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

for small rotor displacements
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A 6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

$$
\begin{gathered}
f_{x}=k_{p}^{a} x+2 \sqrt{3} k_{i}^{a} i_{x} \\
f_{y}=k_{p}^{a} y+4 k_{i}^{a} i_{y}
\end{gathered}
$$

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure can be called

Type A 6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

$$
f_{x}=k_{p}^{a} x+2 \sqrt{3} k_{i}^{a} i_{x}
$$

$$
f_{y}=k_{p}^{a} y+4 k_{i}^{a} i_{y}
$$

$$
k_{p}^{a}=3 \mu_{0} A n^{2} i_{0}^{2} /\left(4 h^{3}\right)
$$

$$
k_{i}^{a}=\mu_{0} A n^{2} i_{0} /\left(4 h^{2}\right)
$$

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3
not traditional AMB structure can be called

Type A 6 gaps uncoupled fluxes

$$
\begin{gathered}
i_{1}=i_{0}+i_{x}+i_{y} \quad i_{2}=i_{0}-i_{x}+i_{y} \\
i_{3}=i_{0}-i_{y}
\end{gathered}
$$

$$
f_{x}=k_{p}^{a} x+2 \sqrt{3} k_{i}^{a} i_{x}
$$

$$
f_{y}=k_{p}^{a} y+4 k_{i}^{a} i_{y}
$$

$$
k_{p}^{a}=3 \mu_{0} A n^{2} i_{0}^{2} /\left(4 h^{3}\right)
$$

$$
k_{i}^{a}=\mu_{0} A n^{2} i_{0} /\left(4 h^{2}\right)
$$

is there a Type B?

symmetry of 3 AMBs

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

symmetry of 3 AMBs

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

not traditional AMB structure
can be called
Type B 3 gaps coupled fluxes $i_{1}(t)=b_{1}+v_{1}(t) \quad i_{2}(t)=b_{2}+v_{2}(t)$ $i_{3}(t)=b_{3}+v_{3}(t)$
careful linearization process ...
allows to prove that
linearization is impossible!
ideas
symm of 3
symm of 3

3 gaps AMBs do not exist
and in the symmetry of 3 world

comparing symmetries of 3 and 4 AMBs

looks like
3 gaps AMBs do not exist
and in the symmetry of 3 world
there are no better structures
but
what about

types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

a symmetry of 3 geometry
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

a symmetry of 3 geometry with 6 gaps
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

a symmetry of 3 geometry with 6 gaps
and coupled fluxes
types of AMBs types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

a symmetry of 3 geometry with 6 gaps
and coupled fluxes
will it work?
types of AMBs
types of AMBs symm of 4 comparisons
ideas
symm of 3
symm of 3

a symmetry of 3 geometry with 6 gaps
and coupled fluxes
will it work?
will it be a better structure?

