Limitations of Reluctance Networks to Model the Frequency-Dependent Leakage and Fringing Fluxes in Active Magnetic Thrust Bearings

18th International Symposium on Magnetic Bearings

Robert Seifert
VEM GmbH, Dresden, Germany

Lyon, 19th July, 2023
Leakage and Fringing Fluxes in Active Magnetic Thrust Bearings

Robert Seifert — Lyon, 19th July, 2023
Application: Aerospace
Vibration Assisted Drilling of CFRP–Titanium–Composites

Example: KEBA LeviSpin

Conventional Drilling

Vibration Assisted Drilling

Radial: Maximization of bearing stiffness
- Low inductances and voltages, fast controllers
- Maximization of bandwidth of current control 4…5 kHz

Axial: 100 Hz-vibration with 10 μm precision

How do eddy currents affect the macroscopic leakage and fringing flux distribution?
Active Magnetic Thrust Bearing

Working Principle

Combined active radial- and thrust bearing

Focus: Thrust bearing with nonlaminated core

- Homopolar pm–bias flux Φ_b
 - Constant for small displacements
 - Evenly distributed between both halves of the thrust bearing, back iron over radial bearing

- Homopolar control flux Φ_x with toroidal coil and control current i
 - Linear behavior achieved by differential principle:
 \[
 F = k_{\text{Geo}} \cdot \Phi_v \cdot \Phi_x
 \]
 \[F \sim \Phi_x\]

Figure: Cross-section through active magnetic bearing
Active Thrust Bearing
Magnetic Field

- **Common assumption:** \(F \sim \Phi_x \sim i \) with \(\Phi_x = \frac{L_h i}{N} \)
 - **Current control**

 Condition: Neglectable eddy currents (for radial bearings w/ laminated cores)

- **But:** Eddy Currents require additional magnetizing current
 - Magnetic skin effect caused by eddy currents lowers inductance for high frequencies:
 \[L = L_{\text{eff}}(j\omega) \text{ and not } L = L_h = \text{const.} \]

- **Correct:** \(F \sim \Phi_x \sim i_{\mu h} \)
 - **Flux control**

- **Problem:** \(\Phi_x \) is not known to the controller
 - **Fractional-order flux estimator**

\[i = i_{\mu h} + i_{\mu e} \]

\[\text{measurable force-related} \]

\[(R_{Cu} \ll \omega L, \ t \ll T_h) \]
Magnetic Bearing Control

Current control with direct current measurement

- **Problem:** force-generating current $i_{\mu h}$ cannot be measured and is unknown to the controllers
- **Assumption:** $i_{\text{meas}} = i_{\mu h}$ is only valid in quasi-stationary state
- **Consequence:** Decrease of dynamic, bandwidth and stability of the position control

Diagram

- Current controller
- Inverter
- Current plant

No feedback of force generating current

Mathematical Expressions

- $f^* \rightarrow 1 / k_i$
- $i_{\mu h} \rightarrow e_i$
- $u^* \rightarrow V_t$
- $1 / (1 + sT_t)$
- $u \rightarrow R_{Cu} + sL_h$
- $i_{\mu h} \rightarrow ki$
- f
Magnetic Bearing Control
Flux Control with Flux Estimation

- **Solution:** Determination of flux from measured coil current with flux estimator
- **Ansatz:** Modeling of eddy currents with frequency-dependent *effective inductance* $L_{\text{eff}}(j\omega)$
- **Optional:** Consideration of leakage and fringing fluxes (stationary)
- **Controller design:** small time constant T_t + large time constant T_h ➔ **Amplitude Optimum**

\[
\frac{T_h, f / N}{1 + s T_h, t} \frac{R_{Cu} + s L_{\text{eff}, t}(s)}{1}
\]
Modeling – What is included?

Effective Inductance

- **Eddy currents:** Solving of diffusion equation
 \[B \int \frac{dA}{\Phi} N i_x/\Phi \sum R_i \frac{N^2}{R_{\text{eff}}} \Rightarrow L_{\text{eff}} \]
 - Sum of fractional transcendent systems \(f(\sqrt{j\omega}) \)

- **Saturation:** Coefficients of flux estimator cannot be implemented dependent on current load
 - Choice of pre-defined relative permeability \(\mu_r \) according to current load point.
 - ISMB17

- **Hysteresis:** Fractional All-Pass Filter
 - Frequency-dependent consideration for single load point
 - High effort, little benefit

- **Leakage and fringing fluxes:** reluctance network (RN)
 - Flux distribution heavily depends on magnetic skin effect
 - Hardly representable with RN over entire bandwidth
 - Stationary correction factors?

Figure: Magnetic circuit of thrust bearing separated into part reluctances
Determination of Full Reluctance Network (Static)

- Identification of all fluxes Φ by FEA for known mmf Θ
- Analytical calculation of core reluctances (high accuracy)
- Computed of Leakage/fringing reluctances by solving of SLE

Leakage and Fringing Fluxes in Active Magnetic Thrust Bearings
Robert Seifert — Lyon, 19th July, 2023
Simplification of Full Reluctance Network (Static)

- 0) Static analysis of impact of leakage and fringing flux paths

Leakage and Fringing Fluxes in Active Magnetic Thrust Bearings

Robert Seifert — Lyon, 19th July, 2023
Simplified Reluctance Network (Static)

What is the purpose of the network?

Determination of force: \(L_{hf} \)

\[
\begin{align*}
\phi_t &= R_{ri} \phi_i \\
\phi_f &= 2 \cdot R_{g1} \phi_i \\
\phi_i &= 2 \cdot R_{g1} \phi_i
\end{align*}
\]

- Distinction between total and force-generating flux necessary ➤ flux divider

\[
L_{hf} = k_{uf} \cdot N^2 \frac{\Phi_f}{\Theta} = 1.043 \cdot L_h
\]

Conclusions:

- **Unexpected:** \(k_{uf} > 1 \) ➤ presence of fringing and leakage fluxes actually increases force!

- **Cause:** Fringing more dominant than leakage ➤ Most likely general rule for similar thrust bearings

- Both factors \(k_{ut} \) and \(k_{uf} \) differ significantly and should be considered separately!
Frequency-dependent flux density distribution

Figure: Flux density distribution in the core of the thrust bearing without permanent magnets for various frequencies, displayed flux density limit is kept constant at 1 T, displayed flux density limit is set to mean value inside air gap when exited with 1 A
Frequency-dependency of leakage and fringing fluxes
Influence of the magnetic skin effect

- Change of behavior above 100 Hz:
 - Leakage flux swirls crossing entire coil are not negligible anymore
 - Network simplifications barely possible
 - Not usable in real-time control systems
 - Leakage and fringing fluxes close to shaft disappear
 - ... close to the coil they are amplified
 - Complete shift of flux distribution
 - Little impact on total flux Φ_t, as effects cancel each other out
 - Force-related flux Φ_f calculated by network basically becomes meaningless

- No known approach to consider the influence of magnetic skin effect on leakage and fringing flux distribution
Frequency–dependency of leakage and fringing fluxes
Error of Reluctance Network (RN) to FEA

\[
\Delta R_{\text{eff}} \text{ in dBH} = 10 \log_{10} \left(\frac{L'_{\text{eff}}}{R'_{\text{eff}}} \right)
\]

Errors to FEA

- **Absolute Amplitude Error**
 \[\Delta R_{\text{eff}} \text{ in dBH}^{-1} \]

- **Relative Amplitude Error**
 \[\left| \frac{\Delta R_{\text{eff}}}{R_{\text{fem}}} \right| \text{ in %} \]

- **Absolute Phase Error**
 \[\Delta \phi \text{ in } ^\circ \]

Force-related Inductance \(L'_{\text{eff}} = \frac{N^2}{R'_{\text{eff}}} \)

- \(k_f = 1.055 \)
- \(k_f = 1.043 \)

Leakage and Fringing Fluxes in Active Magnetic Thrust Bearings

Robert Seifert — Lyon, 19th July, 2023
Conclusion

Motivation:
\[F \sim \Phi_x \]

Assumption: Correct

\[\Phi_x \sim L_h \cdot i_{\text{meas}} \]

State of the art:
\[\Phi_x \sim |L_{\text{eff}}(j\omega)| \cdot i_{\text{meas}} \]

- **Position Control with underlying flux control and fractional-order flux estimator**

- **Aim:** Improvement of estimator by including leakage and fringing fluxes

- **Significant Impact:** 5% on \(L_{h_f} \) and 10% on \(L_{h_t} | L_{\text{eff}_t} \) (Accuracy)

Literature suggests: Reluctance Networks (RNs), but:
- Although accurate for static case, only insufficient consideration of magnetic skin effect
- Challenging to calculate (analytically), inefficient to implement in real-time
- Constant correction factors with higher accuracy over entire frequency range

- **Correction factors are simple, accurate and efficient!**

- **If FEA is available:** Reluctance Networks have no practical benefits! *Are they obsolete?*
Actually, it is not that complicated...

with the Riemann-Liouville definition:

\[D^\alpha f(t) = \frac{1}{\Gamma(1 - \alpha)} \frac{d}{dt} \int_0^t \frac{f(\tau)}{(t - \tau)^\alpha} \, d\tau \]

one determines the half derivation of \(t^2 \):

\[_0D^{\frac{1}{2}}(t^2) = \frac{1}{\Gamma(1 - \frac{1}{2})} \frac{d}{dt} \int_0^t \frac{\tau^2}{(t - \tau)^{\frac{1}{2}}} \, d\tau = \frac{8t^3}{3\sqrt{\pi}} \]

Thank you for your attention!
Publications and Literature

[Ackermann1985] [Amrhein2016] [Bahr2016] [Baker1996] [Bertotti1998] [Bleuler1984] [Bleuler1994] [Bañuelos2017] [Cardelli2003] [Cauer1954] [Chassaing2008] [Dastjerdi2019] [Deschrijver2008] [Dirscherl2017] [Doyle1981] [Efe2011] [Elwakil2010] [Ernst2020] [Faiz2010] [Feeley1996] [Ferreira2017] [Flax1966] [Fleischer2011] [Fleischer2013] [Fleischer2017] [Gähler1998] [Ghasemi2014] [Grünwald1867] [Gustavsen1999] [Gustavsen2006] [Han2013] [Hecht2021] [Hemenway2021] [Herzog2009] [Horowitz2001] [Hutton1975] [Jaatinen2013] [Jackson1970] [Jackson1989] [Jalloul2013] [Keith1993] [Kessler1955] [Kessler1958] [Köhring2010] [Krasnoselskii1983] [Krishna2011] [Kucera1996] [Lammeraner1966] [Langholz1978] [Larsonneur1988] [Le2016] [León2014] [Levy1959] [Liebfried2018] [Liebfried2021] [Lino2017] [Luo2009] [Lutz2014] [Maione2006] [Maione2013] [Maslen2017] [Matignon1996] [Matsuda1993] [Mayorgyo1985] [McLachlan1955] [Meeker1996] [Milovanovic2015] [Mönch2015] [Monje2010] [Moon1961] [Müller2006] [Noda2005] [Nonami1994] [Nonami1996] [Novak2018] [Oldham1974] [Onyedi2020] [Oustaloup1983] [Oustaloup1995b] [Oustaloup1995a] [Oustaloup2000a] [Oustaloup2000a] [Oustaloup2000b] [Paszek1979] [Pecat2014] [Petrás2009] [Podlubny1999] [Preisach1935] [Rabinovich1992] [Radwan2009] [Retière1999] [Ribbenfjard2008] [Riemann1876] [Riu2003] [Rodriguez2007] [Roters1941] [Roy1967] [Rudolph2019] [Rüdenberg1953] [Sabatier2012] [Sanathanan1963] [Schröder2009] [Schuhmann2006] [Schuhmann2011] [Schweitzer1993] [Schweitzer2009] [Schweitzer2011] [Schwenk2012] [Scott1994] [Seifert2015] [Seifert2016] [Seifert2017b] [Seifert2017a] [Seifert2019a] [Seifert2019b] [Seifert2019c] [Seifert2021b] [Seifert2021a] [Shirreff2016] [Smith1996] [Spece2018] [Stiebler2005] [Stoll1974] [Sun2009] [Svaricek2016] [Swann2009] [Tepljakov2011] [Tepljakov2014] [Tepljakov2018] [Tepljakov2019] [Tepljakov2021] [Välimäki2016] [Vinagre2000] [Vinagre2003] [Vischer1988] [Weiner2018] [Weniger1990] [Whitlow2014] [Whitlow2016] [Whitlow2018] [Wiedemann1967] [Wong2008] [Yi1995] [Zif2013] [Zhong2014] [Zhong2015] [Zhou2016] [Zhu2004a] [Zhu2004b] [Zhu2005a] [Zhu2010] [Zingerli2010] [Zlatnik1990] [Zmood1987]