Experience in Magnetic Bearings
Lessons Learnt and Expectations

by Antoine LUCAS and Alain GELIN
1. Introduction, TotalEnergies in brief
2. Experience in Magnetic Bearings
3. Integrated Compressors: Where we came from… and where we want to go
4. AMBs - Lesson Learn and Expectations
5. Conclusion, “We have a dream…”
Introduction, TotalEnergies in brief
About TotalEnergies: our ambition and our mission

TotalEnergies is a global multi-energy company that produces and markets energies: oil and biofuels, natural gas and green gases, renewables and electricity.

Active in more than 130 countries, TotalEnergies puts sustainable development in all its dimensions at the heart of its projects and operations to contribute to the well-being of people.

As a major player in the energy transition, TotalEnergies’ ambition is to reinvent the way energy is produced and consumed to get to net zero by 2050, together with society, and to resolve the climate challenge.

OUR MISSION
Our 101,000 employees are committed to energy that is more affordable, cleaner, more reliable and accessible to as many people as possible.
A multi-energy company, our vision in 2050

2021 energy mix:
- Oil: 44%
- LNG & Gas: 48%
- Renewables & Electricity: 7%
- New Molecules: 2%

2050 energy mix:
- Oil: 50%
- LNG & Gas: 25%
- Renewables & Electricity: 25%
- CCS: 50–100 Mt CO₂e
A multi-energy company, our key figures

- $18.1bn in adjusted net income in 2021
- World no.2 in liquefied natural gas
- 8.8 million gas and power customers in Europe
- 150,000 charge points for electric vehicles by 2025
- > $3bn invested in renewables and electricity in 2021

- > 100 GW of production capacity for renewable electricity by 2030
- 30% circular polymers by 2030
- More than 8 million customers served in nearly 16,000 service stations each day
- 150 hydrogen filling stations operated in Europe by 2030

- 2.8 Mboe/day produced in 2021, of which 54% natural gas
- 740 business-related competencies
- More than 4,000 researchers in our 18 R&D centers
- ± $1bn invested in R&D in 2021, of which 50% devoted to decarbonation solutions
Emissions reduction roadmap

Reducing Emissions...

CO₂eq emissions (MT) Scope 1+2 operated

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂eq emissions (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>46</td>
</tr>
<tr>
<td>2022</td>
<td>40</td>
</tr>
<tr>
<td>2025</td>
<td>38</td>
</tr>
<tr>
<td>2030</td>
<td>25 - 30</td>
</tr>
</tbody>
</table>

-13% CCGT

Being more efficient and capturing...

CO₂eq emissions (MT) Scope 1+2 operated

- Portfolio increase
- Emission reduction initiatives (with CCS)
- Natural carbon sink

Stopping routine flaring

Objective: Zero in 2030

Methane emissions (operated)

- Combustion
- Fugitive emissions
- Process venting
- Cold venting
- Flaring

-50% vs 2020
-80% vs 2020

25 - 30
Active Magnetic Bearings (AMBs) will be part of the solution
02.

Experience in Magnetic Bearings
Experience in Magnetic Bearings

A long experience including compressors, turbo-expanders and electrical motors

Lacq, France
- KB-403 World First
- K31-816
- 2 Boosters

Turbo-Expanders (TEXs)
- UK, Belgium, Congo, Algeria, Russia, Kazakhstan, Denmark

Incahuasi Bolivia - 2 ICL™ units
- From 73 to 106 bar
- 4.5 MW @ 12000 rpm

Tyra Offshore – Denmark
- 7 HSEM Stand Alone + 2 TEXs
- Up to 15.9 MW @ 8500 rpm

Brunei – Export Gas ICL™
- From 13 to 59 bar
- 10.8 MW @ 8500 rpm

Donges Refinery - France
- HSEM Stand Alone (Oil Bearing)
- 0.9 MW @ 12500 rpm

Qualification of ICL™ from BH
- Dry Commercial Gas
- Water Saturated Gas few years after

Saint-Auban - France ICL™
- From 13 to 90 bar
- Ethylene compressor – 9 impellers
- 2.8 MW @ 11000 rpm

Qualification of MAN-ES
- Sealed HOFIM™ (with MECOS AMBs)
- Dry / Water Saturated Gas

* Picture from Website

03. Integrated Compressors

Where we came from… and where we want to go
Electrical motor driven centrifugal compressor at a glance

Complex system

Auxiliaries
- Lube oil system
- Seal gas system
- Tenth of instruments

Sensitive systems
- Dry gas seals with need for seal gas conditioning
- Lack of Reliability

Emissions
- Direct emissions (HC leaks to flare through shaft end seals) – Route flaring
- Induced CO₂ emissions (seals failure ⇒ compressor unavailability) – Non-Routine flaring
- Noise

Conventional Package
Conventional solution, in short...

Pros

- Compression architecture covered by many standards (API, ISO, etc.).
- Technology well known worldwide including field operation teams.
- Technology well known by EPCs.
- Competition between Suppliers/OEMs (Baker Hughes, MAN-ES, MHI, Siemens/DR).
- Can accommodate high pressures and all type of gases.

Cons

- Complex architecture including multiple instruments.
- Multiple auxiliaries (lube oil, sealing gas, cooling system).
- Need for utility fluids (air, oil, nitrogen, water).
- Dry Gas Seals (OPEX, lack of reliability).
- Emissions (hydrocarbons to flare, CO$_2$ from FG combustion).
- Weight/Footprint (Offshore)

How to move forward...
Two proven technologies from 90’s

High Speed Electric Motors
HSEMs

- VSD driven, Spinning at high speed
- Rotor supported by active magnetic bearings
- Cooled by atmospheric air or by pressurized process gas

Active Magnetic Bearings
AMBs

- Rotor supported by magnetic field
- Well proven technology since the 90’s (experience KB303 Lacq SNEA(p) – 1987)
- Experience from other Projets

No more gear box requirement

No more lube oil requirement
From Conventional to Integrated

Conventional Package

- No Gearbox
- No Lube Oil System
- No dry gas seal system
- Less instruments
- HS Motor under pressure cooled by process gas

Stand Alone Packages

- HSEMs & AMBs cooled with atmospheric air
- Compressor still with Dry Gas Seals (reliability concern)

Integrated (Hermetic) Packages

- HSEMs & AMBs: Pressurized and cooled with Process Gas
- No more Dry Gas Seal for Compressor (better reliability)

Thanks to HSEMs and AMBs
From Conventional to Integrated

Integrated (hermetic) compressor

Highlights

- No dry gas seals
- No lube oil system
- No cooling water
- No utilities
- No emission (gas, oil, noise)
- Only few instruments

Simple, lean package
Conventional vs Integrated in brief

- Fully Hermetic (no flaring)
- Footprint reduction (~50%)
- Weight reduction (~25%)

Simple, lean package

* Courtesy of BH
Integrated Compressors, in short...

Pros
- All electrical
- No auxiliary system (only VSD)
- No air, no nitrogen, no cooling water
- No direct emission from seals
- No dry gas seals (increased availability for upstream applications ⇒ Reduced flaring)
- Reduced footprint and weight (lower CAPEX installation cost)
- Simplified maintenance (lower OPEX)

Cons & Limitation
- Cannot be used with some gases (limitations in CO₂ and H₂S contents)
- Limited in discharge pressure (~300 bara)
- Less competition on the market
- CAPEX

… Still some limitations from Active Magnetic Bearings
Integrated Compressors, Today To come

To comply with TotalEnergies Ambition
04.

AMBs - Lessons Learnt and Expectations
Availability/Reliability

Feedback from TTE Operators over the years (few Verbatim):

- “No major issue from hardware”
- “Nothing to report, No negative feedback”
- “Generally reliable but if we have issues, we are wholly reliable on equipment OEM and AMB suppliers, Black Box”

Confirmation from Bolivia – Incahuasi ICL™ units

TotalEnergies Target: Availability 95% / Reliability 97%

AMBs are Reliable – Very low preventive maintenance

Reliability since 2018 (yearly average)
- 10-KA-3101A: 99.7%
- 10-KA-3101B: 99.9%
Transfer Function and “Valley of the Death”

- Typical transfer function of AMBs
- Induction limitation ~1.5 Tesla (FeSi laminations)
- AMB Controller/Amplifier (PID)
- Stiffness/Damping ~10 time lower than oil bearings
- Lack of Stiffness/Damping at Low Frequency

How to increase the Stiffness at Low Frequency?
Turbo-Expanders – Lack of Stiffness at Low Frequency

Upset, transient process conditions…may induce liquid formation on turbine side and low frequency excitation leading to labyrinth wear, contact, rubbing, internal damages and failures.

How to increase the Stiffness at Low Frequency?
Centrifugal Compressor & Sub-synchronous instability

- API Stability Analysis – Main focus on Forward
- But what about Reverse/Backward direction?

- Sub Synchronous Instability
 - First natural frequency in backward motion during compressor loading!

See also: Stability considerations of centrifugal compressor equipped with active magnetic bearings, Proc. 48th, Turbomachinery Symposium, Houston, 2019 Bidaut Y, Somaini R and De Lima Rugue

Compressors with AMBs very Sensitive: Forward but also Backward
Transfer Function, Stability and High Frequency

Many types of algorithms and considerations (see also API-617 Annex-E and ISO-14839 Part 3)

- SISO vs MIMO control system
- Residual negative electrical stiffness of AMBs
- Non-collocation between sensors and bearings
- ...

High Frequency is less a concern – “Speed, Aerodynamic, Friction… Damping”
What about Sub-Synchronous Narrow Filters (tracking sub-frequency of concern) ?

Different types of **synchronous** filters

- Acting on Lower Stiffness and/or Higher damping
- To facilitate critical speed crossing (C\(\nearrow\))
- To let the rotor to run around its own axis of inertia (K\(\searrow\)). Unbalance automatic cancelation, but large “run-out” at probe location
- To limit transmission of force to bearing housing

BUT

Main instability issues are not synchronous
Balancing, thermo/mechanical rotor stabilizations are well known practices

Sub-synchronous filters could help
API-617 - Part 1 / Annex E “Magnetic Bearings”
ISO-14839 - Part 3 “Evaluation of Stability Margin”

Very good supports for Design:
- Campbell in Free-Free condition
- AMB Transfer Functions vs Frequency
- AMB Stiffness & Damping vs Frequency
- Closed Loop transfer functions (Gain)
- Stability checks (log dec extraction)
- Unbalance responses with and w/o filters

BUT...
- Campbell Diagram on AMB is missing
- Indication of Oper. Speed (from MOS to MCS)
- Up to 2 x Rev in Frequency domain
- Mode shapes (F/B) and Damping (log dec)
- More practical / mechanical approaches

Campbell diagram part of lateral analysis, even if not required by API/ISO
API-617 / Annex E “Magnetic Bearings” Vibration Criteria

E.4.8.8.1 During the mechanical running test of the machine, assembled with the balanced rotor, operating at any speed within the specified operating speed range, the peak-to-peak amplitude of unfiltered vibration in any plane, measured on the shaft adjacent and relative to each radial bearing, shall not exceed the smaller of Equation (E.4) or 0.3 times the minimum diametral close clearance (typically the auxiliary bearing), over the range of N_{ma} to N_{mc} as shown in Figure 3.

\[A_{pp} = 3 \left(25.4 \sqrt{\frac{12,000}{N_{mc}}} \right) \]

(E.4)

API only refers to unfiltered peak/peak vibration during Mechanical Running Test...

BUT

- Consideration to be made between No Load MRT vs Full Load String Testing (FLST)
- Vibratory Criteria to consider also 1X filtered vibration and non-synchronous indications
- No unsteady vibration to be accepted (inception/indication of Natural Frequency instability)
- Criteria on 1X (Unbalance) Vector Change between “HOT” vs “COLD” conditions. See Also API 541/546 for Induction and Synchronous Electrical Machines
- Criteria on AMB Current limitations – Margin prior saturation
- Criteria on AMB Temperatures – Efficient cooling
- In any case, Criteria during FAT/SAT < Alarm & Trip protection Levels

Criteria should be part of Standards

Clear suggestion to OEMs (Original Equipment Manufacturers)
Axial compensation and Thrust bearing

Axial thrust bearing
larger than compressor impellers !
Induction limitation to ~1.5 Tesla

- Compliance to API requirements:
 Thrust Capacity at least 2 times expected load
- To cope with upset & transient conditions
- Weight, Overhang, Unbalance concerns
- Back-To-Back compressor is recommended to limit axial load and variation
- HSEM bilateral cooling is also preferred

How to increase the Thrust Magnetic Bearing Capacity ?
Originally AMBs were designed for:

- *Operation with atmospheric air (Stand Alone HSEM)*
- *High Speed drives and HVAC air compressors*
- *Clean & Dry Commercial Gas application (MoPiCo™)*

Some developments are still required to meet future challenges

Key Challenges for Upstream and Associated Gases

- Compatibility with CO₂, H₂S, MEG/TEG, Methanol, Hg
- Suitability with Water Saturated Gas conditions
- Free Water during Settle Out Pressure (SOP)
- NACE Diagram Zones 0, 1 and 2 ?
- (1 bar pH₂S @ 100 bar = 1% H₂S in gas composition)
- Rapid Gas Decompression (RGD) tenth bars / min
- Connectors/Penetrators qualification vs pressure
- Floating installation is not considered critical

Components to be considered

- Sensor and laminations
- Bearing and laminations
- Speed Sensor
- Temperature probes
- Wirings and insulation
- Connectors
- Auxiliary bearings
Auxiliary bearings and recommendations

- Required to support rotor at rest
- To avoid any contact between rotor/stator laminations (active parts or sensor elements)
- To avoid equipment/AMBs complete damage
- Lot of rotordynamics about landing…

BUT

- Sacrificial elements, to be considered as such
- Different type of sophisticated technologies
- No clear definition of “Soft” vs “Hard” landings
- Monitoring prior to restart (after landing events)
- Not “off the shelf” components (time delivery)
- Very expensive components
- Spare part management (Capital Spares)

Reference made also to ISO-14839 Part 4

Recommendation:
No delevitation/landing during Factory Test

Sacrificial components, Capital Spares, Simple and Cost Optimization
Few Quality issues about Sensors, Cables, Connectors, Insulation, Cabinet…

Connector/Cables routing and insulation

Liquid migration within connectors (sensor/power)

Junction Box Arrangement Cabling

High Tech: Strong QA/QC – Factory and Site Installation/Cabling…
Always time-consuming and not fully justified activities

- Doesn’t deem necessary thanks to Upfront Lateral and Stability analysis
- Implemented Transfer Functions as per anticipated ones (from lateral analysis)
- Identical Transfer Functions for identical equipment
- Factory Testing with Project/Contractual cables (length, impedance…) OR how to considered proper influence without Project cables (electrical compensation) ?
- Any modification of Transfer Functions shall be fully justified and documented
- If modifications applied during FAT, Lateral analysis to be rerun with last revision
- No AMB re-tuning is anticipated during commissioning activities at SITE

To make them fully democratized, AMBs shall be as simple as lubricated bearings

AMBs, No more considered as a “Black Box”
Control Cabinet: Obsolescence / Retrofit / UPS

Obsolescence / Retrofit
- Needs to be fully understood and anticipated on Project basis
- Power Supply, Magnetic Bearing Control, Cards, Amplifiers…
- System Interface/Communication with Package UCP / Plant DCS
- Cabinet retrofit might be required after 10, 15 years

Redundant Internal Batteries vs Plant UPS
- TotalEnergies preference is Plant UPS (Uninterrupted Power Supply) for Maintenance purpose (no battery within AMB Cabinet)
- Auxiliary batteries for Factory Testing (Workshop backup)
Well proven technology for many years (Compressors, TEXs, HSEMs…)
Reliable from Hardware to Control, with limited maintenance

BUT still some Challenges …

- Limitations in term of capacity (Journal / Thrust)
- Sub-synchronous (Low Frequency) is always a concern (stiffness, stability…)
- API/ISO Standards to be improved (Mechanical stability analysis, Campbell)
- Acceptance criteria need to be revisited (Vibrations, but also Current / Temperature limitations)
- Some limitations in terms of “contaminants” for Upstream and Water Saturated applications
- Touch Down / Auxiliary bearings … Consumable components, Spare parts (and Cost), Monitoring
- OEM Factory Tuning & Site Commissioning to be simplified (and documented)
- Obsolescence (Electronics) / Spare part management to be anticipated
- Integrated Compressor = Integrated “Organization” with Compressor Vendor fully Responsible and COST

To make AMBs fully attractive and democratized, and No more a “Black Box”
05.

Conclusion - “We have a dream…”
To meet future climate challenges …

1987 in Lacq
Active Magnetic Bearings (AMBs)
Dry Gas Seals (DGSs)

Today
Only few AMBs!
All Compressors with DGSs

Near future, our Dream
All Compressors with AMBs
No more DGSs

Conventional

… We count on you to make this dream a reality
Thank You

Q & A
Définition TotalEnergies / Compagnie

Avertissement
Cette présentation peut contenir des déclarations prospectives, au sens du Private Securities Litigation Reform Act de 1995, relatives à la situation financière, aux résultats d'exploitation, aux activités, à la stratégie et aux projets de TotalEnergies, qui sont soumis à des facteurs de risque et à des incertitudes résultant de changements dans, notamment, le développement et l'innovation technologiques, les sources d’approvisionnement, le cadre juridique, les conditions de marché, les événements politiques ou économiques. TotalEnergies n'assume aucune obligation de mettre à jour publiquement les déclarations prospectives, que ce soit en raison de nouvelles informations, d'événements futurs ou autres. De plus amples informations sur les facteurs susceptibles d’affecter les résultats financiers de la Compagnie sont fournies dans les documents déposés par TotalEnergies auprès de l'Autorité des Marchés Financiers et de la US Securities and Exchange Commission. En conséquence, aucune certitude ne doit être accordée à l'exactitude ou à la justesse de ces déclarations.

Propriété intellectuelle
Toute reproduction, publication, transmission ou plus généralement toute exploitation des éléments de cette présentation est interdite, sauf autorisation écrite expresse de TotalEnergies.